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Abstract: Effective crop disease prevention is essential to ensure global food 

security, and early disease detection is a vital part of this protection. Traditional 

techniques of identifying disease are lengthy process, costly, sometimes require 

specialized knowledge, and nevertheless may produce erroneous outcomes. Ar-

tificial intelligence offers the best answer in this situation. Deep learning has be-

come essential for analyzing images and classification. This study proposes a 

website that uses deep learning for classifying three major diseases of maize 

leaves: blight, common rust, grey leaf spot, as well as for identifying healthy 

leaves. Additionally, it conducts a comparative analysis of various state-of-the-

art models using the same dataset to determine the most suitable approach for 

website development, considering metrics such as accuracy, precision, recall, F1-

score, training time, and model size. All the used models (MobileNetV2, 

AlexNet, ResNet18, VGG16, VGG19, and SqueezeNet) have been optimized for 

faster operation and lower storage consumption. The models were trained using 

the "Corn or Maize Leaf Disease Dataset" on Kaggle, which included 2930 im-

ages of maize leaves. After that the models were tested using a separate set of 

422 images, categorized into four classes: three representing diseases (blight, 

common rust, and grey leaf spot) and the fourth representing healthy leaves. Out 

of all the models, ResNet18 has the highest accuracy (96.45%). ResNet18 has 

several evaluation matrices that make it ideal for this investigation, including 

quick training and a small model size. As ResNet18 provides the best result, the 

website can accurately classify disease class and display the probability of iden-

tification for uploaded corn leaf images using this model. The model's perfor-

mance is found satisfactory for its real-world application in automatically detect-

ing maize leaf diseases. 

Keywords: Machine Learning, Deep Learning, Transfer Learning, Mo-

bileNetV2, AlexNet, ResNet18, VGG16, VGG19, SqueezeNet, Corn Disease 

Classification, Web based prediction system. 

1 Introduction 

The agricultural crop maize, or corn, is very versatile and can grow in a variety of agro-

climatic situations. Following wheat and rice, it is the third most important crop in terms 
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of agribusiness. Because maize is the cereal that is most often grown worldwide, it has 

earned the title "Queen of Cereals." It contributes significantly to ensure food security 

by providing an essential supply of food, nutrition and energy for the expanding world 

population [1]. Maize is also a major supplier of raw materials for a variety of industrial 

goods. 

Though the maize plant has a remarkable yield potential, it is highly susceptible to a 

number of diseases that can cause yearly losses of 6% to 10% [2], [3]. These maize 

diseases are largely brought on by different bacteria, fungus, viruses, and viroids. Dis-

coloration, rot, scab, blight, necrosis, wilt, and deformities are typical signs that are 

used to recognize and diagnose foliar diseases in maize. Accurately identifying diseases 

that affecting maize leaves is essential for guaranteeing a healthy maize harvest and is 

a considerable issue for farmers who lack specialized experience. The traditional 

method of identifying maize leaf diseases depends on physical leaf inspection and the 

knowledge of plant pathology expertise. However, there is a chance that the diseases 

may be misinterpreted, which would result in inefficient pesticide treatments. This not 

only hurts the ecosystem but also makes maize crops more vulnerable to damage. As 

they seem identical, the appearance of regions suffered with numerous illnesses can 

occasionally be challenging to distinguish with human vision. Therefore, it is essential 

to offer a realistic, automated system for identifying maize leaf disease. The creative 

use of artificial intelligence through machine learning is substantially facilitating the 

development of automated disease detection and categorization.  Artificial intelligence 

is achieving remarkable advancements in bridging the gap between human and com-

puter capacities. Even with little to no human involvement, the automated application 

of pesticides and fertiliser may be more effective. The benefits of intelligent agriculture 

will therefore be brought about. As a result, the treatment for corps disorders, which 

can be recognised from its images, will be accurate. Segmentation, masking, threshold-

ing, clustering, edge detection, histogram analysis, and other image processing tech-

niques have been primarily utilized to diagnose plant diseases [4, 5]. Using conven-

tional image processing techniques to analyze a picture of a maize leaf normally yields 

misleading findings since the background of such images is frequently complex and 

irregular. Convolutional neural network (CNN) is a key machine learning (ML) method 

in computer vision. When compared to traditional machine learning-based classifiers, 

the innate filtering and automatic feature extraction capabilities of deep Convolutional 

Neural Networks are showing great promise and effectiveness in addressing image 

classification and segmentation challenges across various domains, ranging from med-

ical applications [6, 7] to plant disease detection. CNN can memorize these filter prop-

erties, as opposed to hand-engineered filters utilized in early approaches, given enough 

time and effort. As a result, a well-built CNN model with effective image preprocessing 

may be able to identify the disease from a picture of a maize leaf.  

This information served as our inspiration for categorizing numerous maize leaf dis-

eases using a variety of state-of-the-art deep learning-based algorithms, and we chose 

the best model (ResNet18) to build the system in a website framework. This classifica-

tion system was created with four classes in mind: three for maize leaf diseases (blight, 
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common rust, and grey leaf spot), and one for healthy state. The pictures have been 

prepared for training using some basic image processing techniques, and models have 

been customized for quick operation and little storage. These classifiers have been de-

signed, trained, validated, tested with tuning to superior performance. We also offer a 

comparative analysis of the findings based on accuracy, training time, model size, and 

other factors. After attaining positive results across all segments, the ResNet18 trained 

model has been incorporated into the website structure for usage in practise. For every 

image of maize leaf supplied to the web, the system can properly identify the disease 

class and estimate the probability that the model would be correctly diagnosed. To the 

best of our knowledge, no one has ever employed this comprehensive, web-based ap-

proach of processed and synthesized maize leaf categorization. 

 

2 Literature Review 

A number of significant studies have paved the way for the development of the catego-

rization of maize leaf diseases. These ground-breaking studies have considerably ad-

vanced our knowledge of disease identification and categorization in relation to the 

production of maize. In this part, we highlight a few of the outstanding contributions 

that have helped to define the classification of maize leaf diseases. 

Several studies have employed various machine learning techniques to classify maize 

leaf diseases, including Random Forest, Neural Network, and Naive Bayes. These stud-

ies typically involved four disease classes: healthy leaves, grey leaf spot, blight, and 

common rust. One such study achieved an average accuracy of 90.09% using the His-

togram of Oriented Gradients (HOG) approach on a dataset of 3500 corn leaf images 

[8]. Another study by Md. Ashraful Haque et al. used Inception-v3 models to categorize 

images into four categories, including Healthy, Maydis Leaf Blight, Turcicum Leaf 

Blight, and Banded Leaf and Sheath Blight. Data augmentation techniques were applied 

to address class imbalance, resulting in a dataset of 13,971 images. The Inception-

v3_GAP model achieved an impressive accuracy of 95.71% [9]. Hamish A. Craze et 

al. compared deep learning models trained on mixed disease field images with and 

without background subtraction. Their dataset included 2,332 images from field condi-

tions, which were augmented to 18,656 images. The GLS_net_pv model achieved 

94.0% accuracy on the PlantVillage Testing Dataset but had lower accuracy in identi-

fying GLS disease [10]. 

Sumita Mishra et al. introduced a real-time approach for maize leaf disease identifica-

tion using a deep learning model deployed on a Raspberry Pi with the Intel Movidius 

Neural Compute Stick. Their dataset had three classes, and the model achieved high 

accuracy, initially 98.40% with a GPU and later 88.66% after optimization [11]. Helong 

Yu et al. used K-Means Clustering combined with deep learning to identify grey spot, 

leaf spot, and rust. Their dataset contained 900 images, and the proposed CNN model 

achieved an impressive accuracy of 93.40% [12]. Pamungkas et al. employed pre-

trained transfer learning models on a Kaggle dataset of 4,188 images related to maize 

diseases. The EfficientNetB0 and ResNet50 models reached accuracies of 94% and 

93%, respectively, though some overfitting concerns were existent [13]. 



4 

It is clear from the research reviewed above that plant diseases often have a regional 

focus because of differences in environmental conditions and geographic locations. To 

identify plant diseases more precisely, many researchers have proposed deep learning-

based methods. Notably, deep learning models are frequently advised when access to 

large datasets is available. With a dataset of 4188 photos, our current study compares 

the findings of several customized models that treat three diseases in corn leaves. In the 

subsequent section, we have introduced an automated website that uses the best deep 

learning model among them for disease prediction. 

 

3 Methodology 

The primary steps of the proposed research involve pre-processing, training, and 

validation of several Convolutional Neural Network (CNN) models for the 

categorization of maize leaf diseases. The entire workflow is succinctly illustrated 

through the following flowchart, wherein each block signifies a distinct step within the 

process. These include the following: image acquisition, dataset, data preprocessing, 

augmentation, feature extraction, use of various CNN models via transfer learning, and 

classification. 

 
The whole process we provide is shown in Figure 1. The initial stage of the process 

involves image acquisition from numerous sources. Hardware could be a part of this, 

such cameras or sensors. The dataset, which consists of a collection of photos represent-

ing the four classifications we want to predict, comes next. The models are trained using 

a wide range of images from this dataset in order to increase accuracy. Data preparation 

comes next in the process. This includes cleaning up the data once it has been acquired, 

fixing discrepancies, and resizing. This process seeks to assure a refined dataset to im-

prove accuracy. We also used augmentation as it's a technique that artificially expands 

the quantity of our training data by introducing numerous modifications and adjustments 

to the original images. This procedure generates slightly modified new copies of the 

pictures, which reduces overfitting and improves the model's capacity to generalize to 

unknown data. Several transfer learning models are used in the next feature extraction 

process to isolate and keep only relevant and essential features. We then train and test 

 

Fig.1. Overview of Proposed Method 
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the dataset using these models. On the other hand, we developed a website where trained 

ResNet18 model is provided for practical use. The website can estimate the disease class 

with probability of the correct classification when a raw picture is provided. 

3.1 Dataset Description 

The dataset used in this study was provided by Smaranjit Ghose [14] and was obtained 

via Kaggle. A variety of pictures are derived from this dataset. A total of 4188 RGB 

images from four distinct classes make up this dataset. These images have different pixel 

sizes. The main objective of this research is to categorise these four types of maize leaves 

autonomously using deep learning algorithms via a customised website. Figure 2 

displays a few examples taken from the dataset.  

 

3.2 Data Preprocessing 

The input data frequently contains noise, outliers, missing values, and other irregulari-

ties. To overcome these challenges, data preprocessing is used to reduce noise, fill in 

missing values, and coherently organize the data to improve accuracy. This stage covers 

three key processes: data cleansing, data transformation, and data reduction. It is essen-

tial to use pictures that are the same size when enabling network training. Therefore, 

image resizing becomes a crucial stage in this process. Images of various dimensions 

are scaled to fit the specifications of the model. During the resizing process, the RGB 

picture is separated into three distinct channels: R (red), G (green), and B (blue). Each 

channel is represented by a 2-dimensional matrix. Every channel is independently 

resized after that. The rescaled RGB picture is then created by combining the resized R, 

G, and B channels. In addition, the dataset is split into three parts for dataset manage-

ment: 70% for training, 20% for validation, and 10% for testing. 

 

3.3 Image Augmentation 

It is crucial to use image augmentation due to the limited amount of training images 

available for a CNN network. This augmentation is crucial to simulate variations that 

may occur during image capture, such as different orientations and added noise. Our 

augmentation strategies include rotating the images by 90°, 180°, and 270° to account 

for various orientations. We also included Gaussian noise to simulate noise that could 

 

Fig.2. Types of Corn Leaf classes [14]. 
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be present during picture acquisition. These augmentation methods provide robust per-

formance in real-world contexts by assisting the network in adjusting to changes in 

orientation and noise. Additionally, image augmentation adds randomness and varia-

bility to the training data, which makes it harder for the model to overfit. It encourages 

the model to learn more robust and general features. 

 

3.4 Feature Extraction using different DL models and Classification 

We used a variety of transfer learning techniques built on Deep Learning (DL), which 

work by collecting input images and focusing on specific objects to distinguish between 

them. Contrary to other classification algorithms, Convolutional Neural Networks 

(CNNs) are notable for their decreased dependence on intensive preprocessing. Con-

trary to more straightforward methods that need manual filter crafting, CNNs can au-

tomatically learn out these filters or distinguishing characteristics with enough train-

ing. A list of the models that were applied in this research are given below: 

VGG16: VGG16 analyses pictures with 224x224 pixels. It uses 3x3 filters in 13 con-

volutional layers, followed by ReLU activation [15]. Stride 2 and 2x2 window max 

pooling minimize feature map size. The architecture has three fully connected layers, 

ReLU activations (except the last), and a softmax output for class probabilities. 

VGG19: The concepts of VGG16 are expanded upon in VGG19, which goes farther 

with 16 convolutional layers grouped with ReLU activations [15]. Using 3x3 filters, 

stride 1, and padding, it keeps the picture size at 224x224. It adds max-pooling after 

convolutions to reduce feature maps, just like VGG16. VGG19 has 3 fully connected 

layers, mostly flattened convolutions with ReLU and in the last layer a softmax layer is 

used for class probabilities. 

AlexNet: AlexNet comprises 8 layers, including 3 fully connected and 5 convolutional 

layers [16]. Images are 227x227 RGB in size. Initial layers use various filter sizes. Map 

size is decreased via max-pooling with 3x3 filters and stride 2. The normalization of 

local responses helps in feature separation. The last layers are fully connected: 4096 

neurons for the first two, 1000 for the final (matching ImageNet classes). ReLU acti-

vation is used, and a softmax generates class probabilities. 

MobileNetV2: MobileNetV2 uses depthwise separable convolutions, linear bottle-

necks, and inverted residuals for efficiency [17]. The core concept is Depthwise Sepa-

rable Convolution, reducing computational load. Inverted residuals expand, convolve, 

and reduce channels. It employs ReLU6 activation for stability and down-sampling for 

efficiency. Customized versions can include average pooling, Dropout, and Fully con-

nected Dense layers. 

SqueezeNet: SqueezeNet relies on "Fire Modules," which have two key components: 

the "squeeze layer" uses 1x1 convolutional filters to decrease the input's channel depth, 

the "expand layer" combines 1x1 and 3x3 convolutional filters to efficiently increase 

channel depth [18]. These Fire Modules are stacked to build the network. Spatial di-

mensions are reduced using max-pooling and strided convolutions. Instead of large 

fully connected layers, SqueezeNet employs global average pooling. A single fully con-

nected layer is added for final class scores, and ReLU activation functions enhance 
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feature learning. This design minimizes parameters and computations while maintain-

ing accuracy. 

ResNet18: ResNet-18 is a well-known convolutional neural network architecture val-

ued for its effectiveness in tasks like image classification and feature extraction [19]. 

At its core are "residual blocks" devised to combat the vanishing gradient issue in deep 

networks. Each residual block comprises two main paths: the "shortcut" or "identity" 

path and the "main" path. The main path typically includes a sequence of convolutional 

layers using 3x3 kernels, followed by batch normalization and ReLU activation func-

tions. Meanwhile, the shortcut path directly passes the input to the block's output. The 

breakthrough idea of ResNet is its "skip connections" or "identity mappings," which 

facilitate gradient flow during training, enabling the training of very deep networks. By 

adding the shortcut's output to the main path's output, ResNet effectively learns the 

"residual" or the difference between the desired and predicted outputs. 

 
ResNet-18 comprises multiple such residual blocks, with the standard configuration 

using four blocks, each having several convolutional layers. To reduce spatial dimen-

sions in deeper layers, ResNet employs strided convolutions or max-pooling. Instead 

of conventional fully connected layers at the end of the network, ResNet-18 opts for 

"global average pooling" (GAP). GAP computes the average of each feature map across 

all spatial locations, yielding a fixed-size feature vector for classification. Finally, a 

fully connected layer with softmax activation produces the ultimate class scores for 

classification. 

 

3.5 Website Development for practical application 

As part of the website's development, the trained model ResNet18, which can identify 

diseases affecting maize leaves, was seamlessly integrated. This integration makes it 

possible to concurrently classify the four classes of maize leaf with probability 

of accurate identification for this model. 

 

Fig.3. Customized ResNet18 architecture for corn leaf disease classification. 

 

 

Fig.4. Flow diagram of website development for classification. 
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To make it easier to integrate the model with the website, the Flask framework is used. 

Flask, which is renowned for its effectiveness and adaptability, provides useful tools 

and features that simplify the development of web applications in Python. Figure 4 

depicts the overall flow diagram for our website based categorization of maize leaf 

diseases. 

 

4 Result and Discussion 

For the purpose of classifying maize leaf diseases, we evaluated a wide range of transfer 

learning models in this work. Our primary goal was to evaluate how well different 

models handled accurately identifying the existence of diseases in maize leaves. The 

results of the research offer crucial details about these models' capabilities and 

demonstrate how they may be applied in actual agricultural situations. Python and 

PyTorch are used to create the classification system for maize leaf disease and train the 

models. The main platforms for model training and evaluation are Google Colaboratory 

with 12.7 GB RAM and 12 GB NVIDIA Tesla K80 GPU and Kaggle with 16 GB RAM 

and 13 GB NVIDIA Tesla P100 GPU. 

Table 1. Performance comparison with respect to evaluation metrics 

Model 
Accurac

y (%) 

Recall 

(%) 

Precision 

(%) 

F1 Score 

(%) 

Training 

Time (Sec.) 

Model 

Size (MB) 

VGG16 95.50 95 95 95 812.0 553.45 

VGG19 95.02 95 95 95 934.0 574.69 

AlexNet 95.50 95 96 95 599.2 244.42 

MobileNe

tV2 
93.36 93 

94 
93 540.9 14.27 

SqueezeN

et 
95.26 95 

95 
95 544.9 5.02 

ResNet18 96.45 96 96 96 540.4 44.79 

 

The outcomes decide how effective such models are. In this work of identifying maize 

leaf diseases, evaluation criteria such as confusion matrix, accuracy, precision, recall, 

f1 score, training duration, and model size have been employed. The accuracy, training 

duration, model size, and other evaluation results for all models are displayed in Table 

1. With a remarkable accuracy of 96.45%, the ResNet18 model lead the field in the 

categorization of diseases. The accuracy of the VGG16 and AlexNet models not far 

behind, was 95.50%  respectively.  SqueezeNet and VGG19 se-cured accuracies of 

95.26% and 95.02%, respectively, while MobileNetV2 attained a slightly lower 

accuracy of 93.36%. 

 

It's intriguing to note that model architecture's complexity and performance seem to be 

related. ResNet18, which had a model size of 44.79 MB and a shorter training time of 

540.4 seconds, demonstrated outstanding accuracy, showing the potential benefits of a 
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reduced model size. Similar results were obtained using AlexNet, which has a model 

size of 244.42 MB and a training time of 599.2 seconds. AlexNet likewise demonstrated 

the ability to successfully capture complex disease patterns. ResNet18 and Mo-

bileNetV2 models' training and validation accuracy and loss are shown in Figures 5 and 

6, respectively. On the other side, models of smaller size, such MobileNetV2's 14.27 

MB model size and 540.9 second training time, had less accuracy. The intrinsic trade-

off between model complexity and generalization capacity may be responsible for this. 

Smaller models may have trouble capturing complex disease details, but they tend to 

generalize more well across diverse datasets. SqueezeNet model, on the other hand, has 

superior accuracy of 95.26% and has a much smaller model size (5.02 MB) and shorter 

training time (544.9 Seconds). The confusion matrix for ResNet18 and MobileNetV2 

is shown in Figure 7 correspondingly. ResNet18 therefore displays the overall best out-

come among all of the cutting-edge techniques used in this study. 

 

 
 

 
 

 

             
      (a) MobileNetV2 (Poor Result)                             (b) ResNet18 (Best Result)         

Fig.5. Training and validation accuracy graph of transfer learning models. 

 

    
        (a) MobileNetV2 (Poor Result)                              (b) ResNet18 (Best Result)             

Fig.6. Training and validation loss graph of transfer learning models. 

 

 

 

 

     
        (a) MobileNetV2 (Poor Result)                             (b) ResNet18 (Best Result) 

 

Fig.7. Confusion Matrices of transfer learning models. 
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Table 2. Comparative analysis of classification results with recent related studies. 

Study Images in 

Dataset 

Method Accuracy 

Ubaidillah et al. [6] 3500 Random Forest + Neural 

Network + Naïve Bayes 

90.09% 

Md. Ashraful Haque et al. 

[7] 

13971 Inceptionv3_GAP 95.71% 

Hamish A. Craze et al. [8] 18,656 GLS_net_pv 94.0% 

Sumita Mishra et al. [9] 4382 Optimized CNN de-

ployed on NCS 

88.66% 

Helong Yu et al. [10] 900 K-Means Clustering 

with CNN 

93.40% 

Wisnu Gilang Pamungkas 

et al. [11] 

4188 EfficientNetB0 94% 

This study 4188 ResNet18 96.45% 

 

The ResNet18 model's outstanding accuracy indicates its capability as a reliable tool 

for automated maize disease diagnosis. However, it's important to note that a model's 

accuracy alone might not be the sole determinant of its real-world usability. Aspects 

including deployment speed, requirements for resources, and adaptation to changing 

agricultural circumstances must also be considered. 

 
According to our research, selecting a model must be done with great care. Depending 

on the specific requirements of an application, a balance between model accuracy and 

complexity can be struck. Models like ResNet18 and SqueezeNet could offer the best 

balance between performance and efficiency for situations with limited resources. The 

 
Fig.8. Website preview of the corn leaf disease. 
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performance of several models from the corresponding papers are compared in Table 

2. We discovered that all of the transfer learning models in our study perform quite well 

since the dataset after augmentation contains a wide variety of pictures and the models 

are customized. As a result, we did not concentrate on developing a new model as all 

existing models already had accuracy in the saturated level. Instead, we concentrated 

on creating a complete system featuring a lightweight yet high-performing model. Fig-

ure 8 displays the website's preview. The system's primary objective is the accurate and 

efficient identification of maize leaf diseases using an intuitive user interface. Users 

may quickly and reliably detect these diseases with our solution, which is designed to 

offer a simple and straightforward experience. 

 

5 Conclusion 

In this work, we focused on categorizing distinct disease in four different classes of 

maize leaves using a variety of transfer learning models. Our strategy includes utilizing 

a dataset with a wide range of maize leaves revealing various diseases.  Through trans-

fer learning, these leaves were preprocessed, enhanced, and used in combination with 

various conventional DL approaches, including VGG19, VGG16, SqueezeNet, Res-

Net18, MobileNetV2, and AlexNet. According to our research, SqueezeNet and Res-

Net18 performed better than the other approaches in correctly identifying maize leaf 

diseases. ResNet18, nevertheless, may have demonstrated the greatest performance 

across all matrices. Notably, we found that accuracy may be increased even with mod-

els with fewer layers by carefully changing training parameters, such as the learning 

rate, number of epochs, and optimizer selection. To boost efficiency and storage appro-

priateness for quicker operations, each model underwent customization. The website 

we designed allows users to accurately categorize uploaded photos of maize leaves us-

ing a trained ResNet18 model. This innovative solution not only identifies the disease 

class for each image but also provides the probability score for accurate classification. 

This thorough method makes disease identification simple, enabling farmers to safe-

guard their crops effectively. In the future, we intend to broaden our study by incorpo-

rating more disease types and algorithms. This expansion aims to make disease detec-

tion even more comprehensive, user-friendly, and expedient. Investigating ensemble 

approaches, which incorporate the positive features of multiple models, may produce 

even more reliable results. Additionally, investigating strategies to overcome the diffi-

culties provided by unbalanced datasets and varying illumination conditions may im-

prove the practical applicability of these models. In keeping with our core goal, we 

remain committed to design an entire system that includes a lightweight, high-perfor-

mance model that can quickly, easily, and precisely detect maize leaf diseases. 
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